

The PT9CN communicates linear position feedback via the CANbus SAE J1939 interface. The PT9CN has been designed for factory and harsh environment applications requiring full stroke ranges up to 550".

As a member of Celesco's innovative family of NEMA 4 rated cable-extension transducers, the PT9CN installs in minutes by simply mounting its body to a fixed surface and attaching its cable to the movable object. Perfect parallel alignment not required.

Output Signal

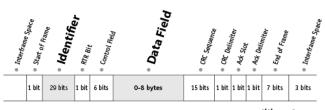
PT9CN Cable Actuated Sensor Heavy Industrial • J1939 CANbus

Linear Position/Velocity to 550 inches (1400 cm) Aluminum or Stainless Steel Enclosure Options IP67 • NEMA 6 Protection

General

Full Stroke Range	0-75 to 0-550 inches
Electrical Interface	CANbus SAE J1939
Protocol	Proprietary B
Accuracy	± 0.10% full stroke
Repeatability	± 0.02% full stroke
Resolution	± 0.003% full stroke
Measuring Cable Options	nylon-coated stainless steel or thermoplastic
Enclosure Material	powder-painted aluminum or stainless steel
Sensor	plastic-hybrid precision potentiometer
Potentiometer Cycle Life	≥ 250,000 cycles
Maximum Retraction Acceleration	see ordering information
Maximum Velocity	see ordering information
Weight, Aluminum (Stainless Steel) Enclosure	8 lbs. (16 lbs.), max.

Electrical


Input Voltage Input Current Address Setting (Node ID) Baud Rate Update Rate

Environmental

Enclosure Operating Temperature Vibration 7 - 18 VDC
60 mA max.
0...63 set via DIP switches
125K, 250K or 500K set via DIP switches
10 ms. (20 ms. available, contact factory)

NEMA 4/4X/6, IP 67 -40° to 200°F (-40° to 90°C) up to 10 g to 2000 Hz maximum

I/O Format and Settings

repetition = 8 msec.

Current % of Measurement

Range

Bo

B₁

Identifier J1939 Reference Future Message Priority Data Field Type* Not Used Node ID** tary 0 0 0 1 1 1 1 Example 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 Identifier Bit No. 17 7 5 2 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 8 6 4 3 1 0 Hex Value 0 F F 5 3 3 F

*Sensor field data can be factory set to customer specific value. **Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below.

.....

Velocity Data

B₆

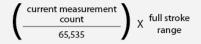
B₇

Data Field

- $B_0 = LSB$ current % of measurement range byte
- **B1** = MSB current % of measurement range byte

 $B_2 = LSB$ current measurement count byte $B_3 = MSB$ current measurement count byte

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

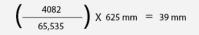

Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable. The CMC is a 16-bit value that occupies bytes B_2 and B_3 of the data field. B_2 is the LSB (least significant byte) and B_3 is the MSB (most significant byte).

The CMC starts at 0x0000 with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at 0xFFFF. This holds true for all ranges.

Converting CMC to Linear Measurement

To convert the current measurment count to inches or millimeters, simply divide the count by 65,535 (total counts over the range) and then multiply that value by the full stroke range:



Sample Conversion:

If the full stroke range is **30 inches** and the current position is **0x0FF2** (4082 Decimal) then,

$$\begin{pmatrix} 4082 \\ 65,535 \end{pmatrix}$$
 X 30.00 inches = 1.87 inches

If the full stroke range is **625 mm** and the current position is **0x0FF2** (4082 Decimal) then,

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Current % of Measurement Range

The Current % of Measurement Range is a 2-byte value that expresses the current linear position as a percentage of the entire full stroke range. Resolution is **.1** % of the full stroke measurement range.

This value starts at 0x0000 at the beginning of the stroke and ends at 0x03E8.

Example:

B₄ = error flag

B5 = error flag

B6 = LSB velocity data byte

B₇ = MSB velocity data byte

Hex	Decimal	Percent
0000	0000	0.0%
0001	0001	0.1%
0002	0002	0.2%
03E8	1000	100.0%

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Error Flags

0x55 (yellow LED on controller board) indicates that the sensor has begun to travel beyond the calibrated range of the internal position potentiometer.

OxAA (red LED on controller board) indicates that the sensor has moved well beyond the calibrated range of the internal position potentiometer.

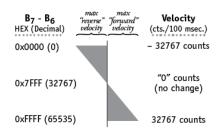
If either error flag occurs within the full stroke range of the sensor, the unit should be returned to the factory for repair and recalibration. B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Current

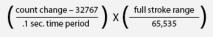
Count

B₂

B₃


Velocity

Error Flags


Β4

B5

Data in bytes $B_7 - B_6$ is the change in the CMC (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity in a post processing operation.

Velocity Calculation

Cable Extension (positive direction):

B7-B6 = 0x80C6 (32966 Dec), full stroke = 200 in.

$$\left(\frac{32966 - 32767}{.1 \text{ sec}}\right) X \left(\frac{200 \text{ in.}}{65,535}\right) = 6.07 \text{ in. / sec.}$$

Cable Retraction (negative direction):

B7-B6 = 0x7F1A (32538 Dec), full stroke = 200 in.

$$\left(\frac{32538 - 32767}{.1 \text{ sec}}\right) \chi \left(\frac{200 \text{ ln.}}{65,535}\right) = -6.99 \text{ ln. / sec.}$$

Setting the Address (Node ID) and Baud Rate

Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number $1 (= 2^{9})$ and ending with switch number $6 (= 2^{5})$.

DIP-1 (2 ⁰)	DIP-2 (2 ¹)	DIP-3 (2 ²)	DIP-4 (2 ³)	DIP-5 (2 ⁴)	DIP-6 (2 ⁵)	<i>address</i> (decimal)
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	0	2
•••						
1	1	1	1	1	1	63

Baud Rate

The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.

The baud rate can be set using switches 7 & 8 on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

DIP-8

0

0

1

1

baud rate

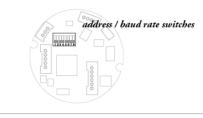
125k

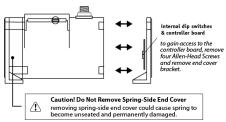
250k

500k

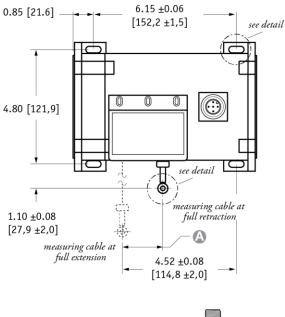
125k

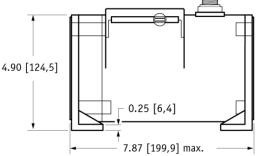
12345678 ¥ = "1"


DIP-7


0

1


1


CANBus Controller Board

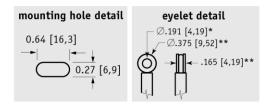
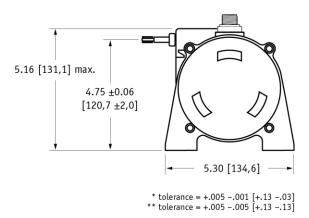
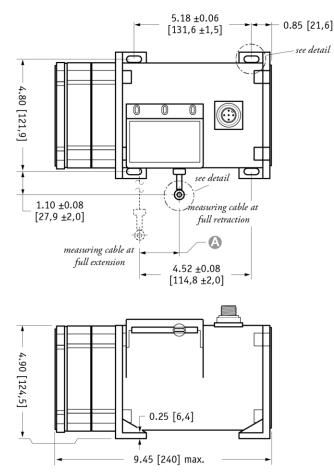


Fig. 1 – Outline Drawing (18 oz. cable tension only)



DIMENSIONS ARE IN INCHES [MM] tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.



DIMENSION (INCHES)

	MEASURING CABLE					
RANGE	Ø .031 in.	Ø .034 in.	Ø .047 in.	Ø .062 in.		
75	n/a	0.22	0.29	0.37		
100	n/a	0.29	0.39	0.49		
150	n/a	0.44	0.59	0.73		
200	n/a	0.58	0.79	0.98		
250	n/a	0.73	0.98	1.22		
300	n/a	0.88	1.18	1.47		
350	n/a	1.02	1.38	1.71		
400	n/a	1.17	1.57	1.96		
450	n/a	1.31	1.77	n/a		
500	n/a	1.46	1.97	n/a		
550	1.61	1.61	n/a	n/a		

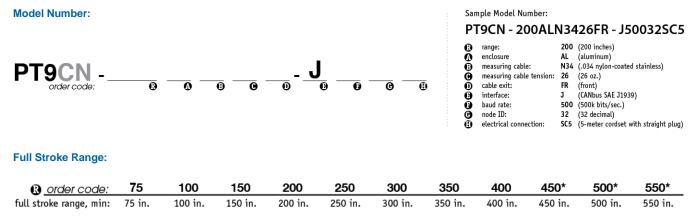
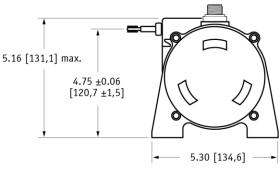


Fig. 2 – Outline Drawing (36 oz. cable tension only)

DIMENSIONS ARE IN INCHES [MM] tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

Ordering Information

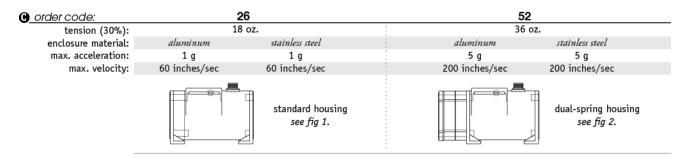

* – 36 oz. cable tension strongly recommended

 mounting hole detail
 eyelet detail

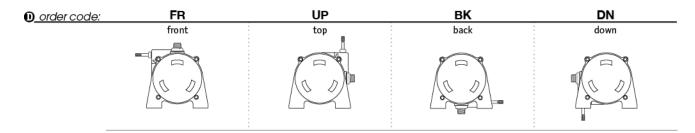
 0.64 [16,3] $\bigcirc 0.191 [4,19]^*$
 $\bigcirc 0.27$ $\bigcirc 0.27$
 $\bigcirc 0.27$ [6,9]

A DIMENSION (INCHES)

	MEASURING CABLE					
RANGE	Ø .031 in.	Ø .034 in.	Ø.047 in.	Ø .062 in.		
75	n/a	0.22	0.29	0.37		
100	n/a	0.29	0.39	0.49		
150	n/a	0.44	0.59	0.73		
200	n/a	0.58	0.79	0.98		
250	n/a	0.73	0.98	1.22		
300	n/a	0.88	1.18	1.47		
350	n/a	1.02	1.38	1.71		
400	n/a	1.17	1.57	1.96		
450	n/a	1.31	1.77	n/a		
500	n/a	1.46	1.97	n/a		
550	1.61	1.61	n/a	n/a		

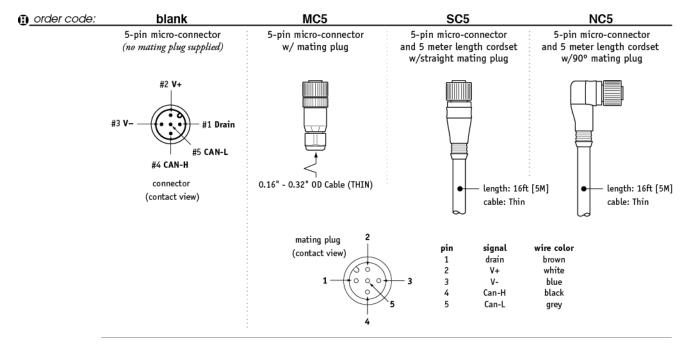


* tolerance = +.005 -.001 [+.13 -.03] ** tolerance = +.005 -.005 [+.13 -.13]


Enclosure Material:

) order code:	Al powder-paint	 ed aluminum	SS 303 stainless		
Measuring Cable:	F F				
B_order code:	N34	S47	S31	V62	
cable construction:	Ø.034-inch nylon-coated stainless steel rope	Ø.047-inch bare stainless steel rope	Ø.031-inch bare stainless steel rope	Ø.058-inch PVC jacketed vectra fiber rope	
available ranges:	all ranges	all ranges up to 500 inches	550 inch range only	all ranges up to 400 inches	
general use:	indoor	outdoor, debris, high temperature	outdoor, debris, high temperature	high voltage or magnetic field	

Measuring Cable Tension:


Cable Exit:

Baud Rate:

🕒 order code:		125		250			500		
	12	25 kbaud		250 kbaud			500 kbaud		
Node ID:									
G order code:	0	1	2	3		61	62	63	
	select address (0 - 63 Decimal)								

Electrical Connection:

